UTILITY OF REAL-WORLD DATA COLLECTION TOOLS FOR **ASSESSING MEDICAL DEVICE BENEFITS**

R. Torrejon Torres¹, **F.** Janeke², **R.** Saunders¹

1. Coreva Scientific GmbH Co. KG; 2. Medtronic Italia S.p.a, Milano, Italy

Background

- For many medical devices the evidence of efficacy and safety is limited compared to pharmaceuticals¹
- Typical high quality evidence generation through randomized controlled trials is often not feasible for medical devices²
- This can be overcome by real-world data collected during device use
- Here we evaluate the lessons learned from data collection during procedural sedation in major hospitals

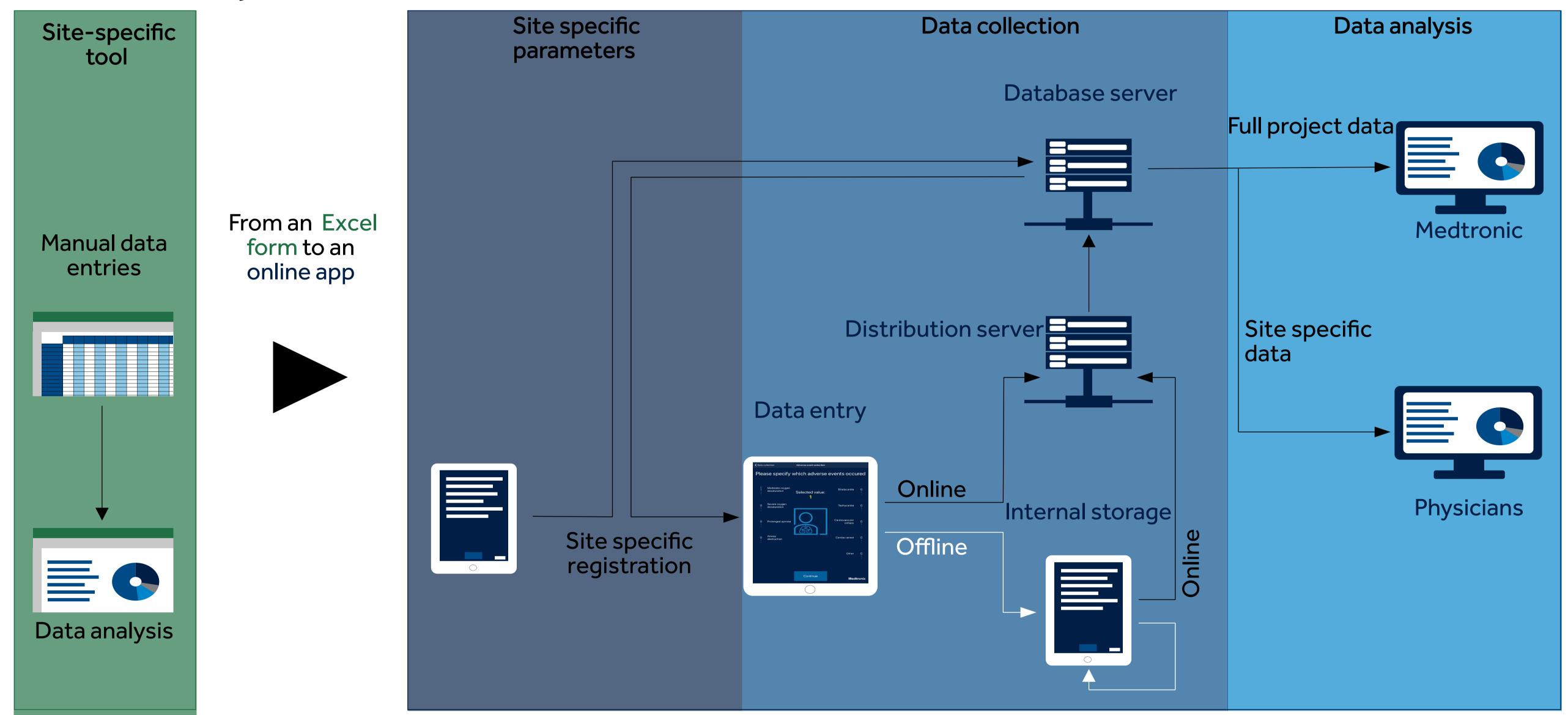
Methods

- As part of a quality improvement initiative (QII) hospitals collected data on current practice and also after introduction of capnography
- The world SIVA tool³ was used to define adverse events and interventions of interest

 Digital technology may lower the barrier for realworld data collection

- Simple tools were developed to capture:
 - ASA risk

Excel tool


- Sedative used
- Depth of sedation
- Escalation of care
- Patient death
- Identified adverse events

Project evolution

- Interventions applied
- Proof-of-principle used an offline Excel tool that was later developed into an iPad app (Fig.1)
- For medical devices, realworld data collection may:
 - Increase their evidence base
 - Help hospitals to understand the incremental benefits provided by new health

View PDF

Mobile app with site-specific options

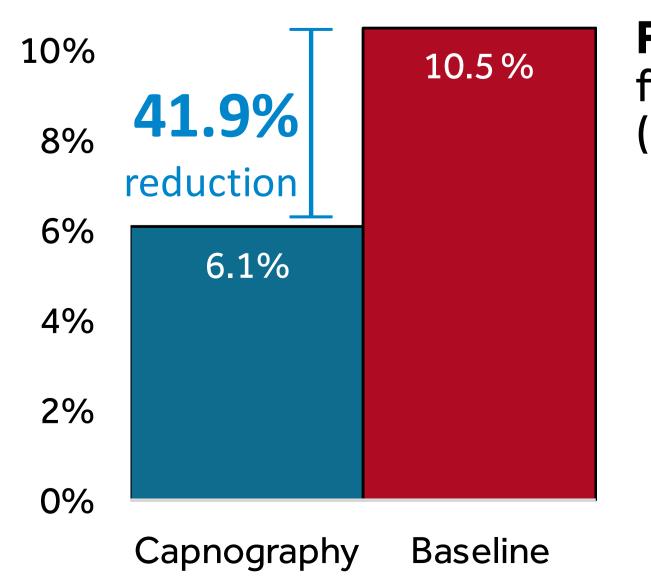
Fig.1 Workflow and evolution of data collection. All online data transfers are encrypted

Results

- Four sites have completed and 5 are currently undertaking a QII using the developed tools (Fig.2)
- User reception to and uptake of the data collection tools was positive
- Three sites have been analyzed in full
- To date, data on over 5,000 patients has been collected; far larger than any published clinical study
- The uptake of capnography decreased the cumulative incidence of adverse events by at least 20% at each analyzed site

- Overall, a 41.9% reduction was observed (Fig.3), suggesting a positive effect on the awareness on respiratory compromise
- The reduction is in line with published literature⁴

Lessons learned


- Success was dependent on the cooperation and buyin of the medical staff
- Therefore, designing the tools simple and easy-touse was of paramount importance

References

- 1. Tarricone R et al.: Health Econ. 2017 Feb;26 Suppl 1:5-12
- 2. Bernard A et al.: Methodological choices for the clinical development of medical devices. (October):325–34 (2014)
- 3. Mason KP et al.: Br J Anaesth. 2012 Jan; 108(1): 13-20
- 4. Saunders R et al.: BMJ open vol. 7,6 e013402. 30 Jun. 2017

Fig.2 Countries in which hospitals engaged in collaborative quality improvement initiatives (QII). **Red**: Completion of the QII (Belgium, Canada, France, Spain); Blue: Ongoing QII (England, Norway, Sweden, Turkey); **Orange:** Planned QII (France, Italy, South Africa, United Arab Emirates)

12%

Fig.3 Primary outcome data from all fully analyzed sites (Belgium, Canada, Spain)

PNS403

ISPOR Europe 2019 2nd-6th of November **Copenhagen, Denmark**

Disclosure

RS is the owner and RTT is an employee of Coreva Scientific, which received consultancy fees for underlying research, but not this presentation. FJ is an employee of Medtronic.

CORZVA Scientific

This publication has been prepared by Coreva Scientific based on research funded by Medtronic Copyright © 2019