

critical care canada FORUM

INTRODUCTION

Mechanical ventilation (MV) is central to intensive care unit (ICU) medicine, but this life saving intervention is expensive and comes with complexities

- A patient in the ICU receiving MV costs circa \$2,000 per day¹
- Optimizing MV provision could result in substantial cost savings and improved patient outcomes
- Proportional assist ventilation plus (PAV^{+TM}) mode is a method of MV that has recently been the focus of clinical trials^{2,3} and a meta-analysis⁴ from Canadian institutions

AIM

To compare health and cost outcomes of PAV+ mode with pressure support ventilation (PSV) for patients receiving mechanical ventilation in the ICU

METHOD

- Literature review of MEDLINE and PubMed indexed publications
- Data analysis of identified clinical trials of PAV+ mode (5 randomized, controlled trials and 1 comparative study)

Source	Parameter	MV	[(CU	Hosp	ital	Successful weaning	Tracheotomy	Re-intubation
Paper, Year	N, PAV+ mode / PSV	Time, Days	Time <i>,</i> Days	Mortality, %	Time, Days	Mortality, %	Patients, %	Patients, %	Patients, %
Botha, 2018 <mark>2</mark>	25 / 25	3.5 / 5.7	9.3 / 11.8	4 / 25	23.1 / 19.9	12 / 38	92 / 80	21/29	4 / 8
Bosma, 2016 ³	27 / 23	3.9 / 4.9	7.3 / 12.4	15 / 13	26.5 / 25.0	33 / 26		15 / 26	11 / 22
Elganady, 2014 ⁵ (a)	30 / 30					3.3 / 6.7	90 / 67		10 / 33
Elganady, 2014 ⁵ (b)	27 / 20	2.4 / 3.9	3.7 / 5.5		4.8 / 6.7				
Elganady, 2014 ⁵ (c)	3 / 10	6.3 / 8.90	8.3 / 10.0		9.7 / 11.5				
Sasikumar, 2013 ⁶	13 / 10	7.0 / 7.5	9.5 / 10.0				92 / 90	7.7 / 10	
Xirouchaki, 2008 ⁷	108 / 100			18/23		23 / 30	89 / 78		
Aguirre-Bermeo, 2014 ⁸	20 / 20	9 / 10	13 / 14	25 / 20				10 / 15	19 / 31
Total / Mean PAV+ mode	253	4.8	8.2	16	17.706	19.9	89.8	14.4	10.6
Total / Mean PSV	238	6.4	10.8	22	16.929	26.6	76.9	22.2	23.8
Difference	+15 pts	-1.67	-2.67	-5.5%	+0.78	-6.7%	12.9%	-7.8%	-13.2%

(a) All patients; (b) Successful weaning; (c) Failed weaning. N, Number of patients

- Creation of decision analytic model in line with International Society for Pharmacoeconomics and Outcomes Research (ISPOR) good practice
- Cohort-level, in-silico, model that represents patient pathway from MV to discharge. Model has 40 years of follow up possible
- Patients: mean 65 years and 40% female
- Standard of care had a mean time in each location of: ICU on MV 8.1 days, ICU 12.6 days, and Hospital 43.5 days⁹
- Mortality risk adjusted by patient location and complications
- Mean care costs per day were \$2,765 (ICU) and 1,019 (general ward),¹ plus treatment of any adverse events
- Quality of life was 0.40 in the ICU, 0.52 in the hospital, and 0.55 in the first year post discharge^{10,11}
- Outcome was the total cost of care for PAV+ mode and PSV, and the cost per quality-adjusted life year (QALY) gained for PAV+ mode vs. PSV
- Costs in 2017 Canadian dollars (\$)

THE COST EFFECTIVENESS OF MECHANICAL **VENTILATION USING PAV+ MODE IN CANADA**

<u>R.J.K. Saunders¹, K.J. Bosma^{2,3}</u>

1 Coreva Scientific, Freiburg, Germany

2 University of Western Ontario, London, Ontario, Canada

3. Critical Care Western, London Health Sciences Centre, London, Ontario, Canada

SHORT-TERM (1-YEAR) OUTCOMES							
The cost of healthcare after 1 year using standard MV, in this case PSV, was \$60,452							
 Hospital costs were \$51,132, of which treatment of complications came to \$1,758 							
First year healthcare costs with PAV+ mode were \$54,253 , a saving of \$6,200							
 Hospital costs were \$43,819, of which treatment of complications came to \$975 							
 Outcomes reflected fewer patient safety events and lower resource use with PAV+ mode 							
PAV+ mode dominated PS QALYs)	SV at 1 year (lower	cost and higher	lge in co:				
Outcome	PSV	PAV+ mode	Char				
MV time, Days	8.4	6.2		-\$1			
ICU time, Days	11.3	8.3		4.0			
Life expectancy, Years	0.75	0.83		-\$2			
Quality-adjusted life expectancy, QALYs	0.25	0.28	Th + h	ne lii			
Hospital costs \$	51 132	43 819	tn	resr			

MODEL DESIGN

Data analysis indicated that PAV+ mode was associated with:

Reduced asynchrony and use of tracheotomy

Higher success in spontaneous breathing trials

Shorter time on mechanical ventilation

Lower in-ICU and inhospital mortality

Shorter time in ICU, longer time in hospital

Two thousand probabilistic sensitivity analyses (PSA) tested response of model outcomes to realistic variations in parameter inputs.

SURE 2. The cost-effectiveness plane for PAV+ mode versus PSV for provision of mechanical ventilation

ne differentiating cost-effective from not cost-effective is drawn at a willingness-to-pay hold of \$50,000 per QALY gained. Dominant: cheaper with more QALYs; Dominated: expensive with fewer QALYs

LONG-TERM (40-YEAR) OUTCOMES

- Care practices today can have long-term impacts on healthcare costs, which is of interest to National payers
- Over 40-years, use of PSV for MV resulted in healthcare costs of \$153,610
- In the same period, use of PAV+ mode returned costs of \$160,543, an increase of **\$6,933**
- Use of PAV+ mode led to increased life expectancy (+1.57 years, 13.01 vs. 11.45) and quality-adjusted life expectancy (+0.96 QALYs, 7.91 vs. 6.94)
- The mean cost per QALY gained was **\$7,380** (median \$4,955)
- PAV+ mode was likely (100%) to be considered cost-effective versus PSV at 40 years
- Increases in QALYs with PAV+ mode were significant (p<0.05).
- Results did not differ substantially if PAV+ mode had no impact on asynchrony, meta-analysis informed clinical effectiveness, or different cost sources were used
- If future care costs were excluded, PAV+ mode was superior to PSV
- Cost and outcomes drivers were time on mechanical ventilation and in the ICU

REFERENCES

- **1.** Evans J, et al. Can J Anesth. 2018;65(6):627–35.
- **2.** Botha J, et al. Crit Care Resusc. 2018;20(1):33–40.
- **3.** Bosma KJ et al. Crit Care Med. 2016;44(6):1098–108
- 4. Tirupakuzhi Vijayaraghavan BK, et al. J Intensive Care Med. 2018;885066618769021.
- **5.** Elganady AA, et al. Egypt J Chest Dis Tuberc. 2014;63(3):643–50.
- 6. Sasikumar S, et al. Indian J Crit Care Med. 2013;17:34.
- **7.** Xirouchaki N, et al. Intensive Care Med. 2008;34(11):2026–34.
- **8.** Aguirre-Bermeo H, et al. Med Intensiva. 2014;38(6):363–70.
- **9. Sinuff** T, et al. Crit Care Med. 2013;41(1):15–23.
- **10. Normilio-Silva K** et al. Crit Care Med. 2016;44(7):1327–1337
- **11. Marti** J et al. J Intensive Care. 2016;4(1):56.
- **12. Vaporidi** K, et al. Intensive Care Med. 2017;43(2):184–91.

CONTACT INFORMATION

- . Rhodri@Coreva-scientific.com
- 2. KarenJ.Bosma@lhsc.on.ca