CLINICAL PRACTICE, MONITORING, AND PATIENT SAFETY DURING PROCEDURAL SEDATION IN FIVE COUNTRIES

Rhodri Saunders¹, Jason Davis¹, Rachel Weissbrod², Peter Kranke³, Jenifer Lightdale⁴, David Whitaker⁵.

1. Coreva Scientific, Freiburg, Germany; 2. Medtronic, Jerusalem, Israel; 3. University of Würzburg, Würzburg, Germany; 4. University of Massachusetts, Boston, USA; 5. Manchester Royal infirmary, Manchester, UK

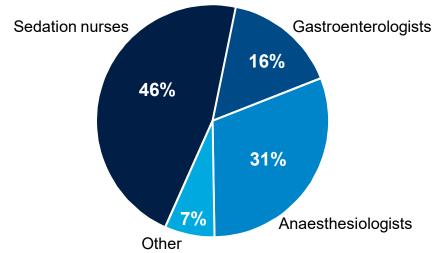
INTRODUCTION

- Procedural sedation is commonly used during gastrointestinal endoscopy procedures but carries increased risk.
- Clinical practice and response to procedural sedation-related adverse events (AEs, World SIVA task force¹ definitions) are currently unknown across geographies.
- Knowledge of global clinical practice would inform comparability of study outcomes across different settings.

AIMS

- Assess procedural sedation practice across various countries (France, Germany, Italy, the UK and the USA) and medical practices.
- Quantify and compare interventions applied to reported AEs.

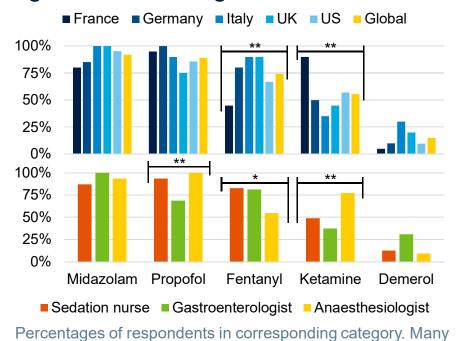
METHODS


- Design and administer online survey (via 3rd party) to healthcare providers (at least 20 per country)
- Screen respondents to ensure only providers with sufficient procedural sedation experience and practice volume respond to questionnaire
- Process data in MS Excel and R to:
- Analyze demographic and practice data (Chisquared test)
- Identify and replace outliers (Dixon Q-test) with global mean
- Weight treatment pattern responses by respondent experience with the AE and how often the respondent provided outliers
- Estimate overall treatment patterns by bootstrap replication and non-parametric inference testing

RESULTS (I)

Medical practice and sedation agents

 Providers were distributed across selected medical specialties (Figure 1)

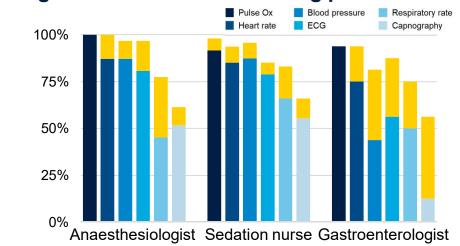

Figure 1: Respondent medical practices

Percentages of 101respondents. "Other" includes cardiologists (3%), critical care specialists (3%) and plastic surgeons (1%)

Use of sedation agents was similar by country and specialty, except for ketamine and fentanyl use (Figure 2)

Figure 2: Sedation agent use

respondents use more than one agent. Significance among


respondents shown in each group: *p<0.05, **p<0.01

RESULTS (II)

Monitoring and adverse events

Capnography use was most varied by country/medical practice (Figure 3)

Figure 3: Sedation monitoring practices

Bar height = respondents using the monitoring method; yellow = those who do not consider it standard of care.

- All SIVA-defined moderate and sentinel AEs were reported to have occurred
- 2.0% reported seizure, 3.0% cardiac arrest in at least 1% of procedures in the last year
- Hypotension, brady- and tachycardia, and short, mild oxygen desaturation were the most common AEs (see abstract).
- ➤ AEs required interventions at differing rates; all could lead to delays (Table 1).

DISCUSSION

- Some differences were identified in sedation agents and monitoring methods.
- Monitoring methods used will influence the frequency of observation of some AEs.
- Gastroenterologists demonstrated the greatest differential between monitoring used and its being considered standard of care.
- Specialties agreed on the most common AEs.
- Treatment patterns were generally consistent
- Oxygen desaturation demonstrated greater variability in treatment response.
- Differences may in part be explained by breadth of SIVA definitions, or by the depth and duration of sedations performed by providers.

CONCLUSIONS

- Most treatment patterns are consistent across geography and practice.
- ➤ Gastroenterologists monitored respiratory parameters least often and reported the highest frequency of short, mild oxygen desaturation events.
- ➤ In regular practice, the most common AEs are relatively mild, but all can have an impact on patient flows in procedural delays.

Table 1: Select adverse events and corresponding interventions

Table 1. Delect adverse events and corresponding interventions								
	None	Tactile Stimulation	Airway Repositioning	Supplemental Oxygen	Bag mask	Laryngeal mask	Call Anaesthesiologist	Procedure Delay
Hypotension	36.1%	5.0%	0.3%	18.2%	0.3%	0.4%	2.8%	4.0%
	[27.9 ; 44.7]	[2.0 ; 10.0]	[0.0 ; 3.3]	[8.9 ; 28.7]	[0.0 ; 1.0]	[0.1 ; 1.0]	[0.9 ; 8.2]	[1.9 ; 7.2]
Bradycardia	57.7%	2.1%	0.7%	7.4%	3.1%	0.8%	3.2%	2.4%
	[44.3 ; 67.8]	[0.8 ; 3.7]	[0.3 ; 1.7]	[4.2 ; 13.9]	[0.5 ; 6.6]	[0.2 ; 2.5]	[1.7 ; 5.3]	[1.3 ; 5.1]
Tachycardia	37.5%	0.1%	0.2%	21.7%	0.0%	0.0%	9.2%	2.1%
	[23.7 ; 53.9]	[0.0 ; 0.7]	[0.0 ; 0.9]	[4.9 ; 47.6]	[0.0 ; 0.5]	[0.0 ; 0.4]	[3.1 ; 22.6]	[1.1 ; 3.5]
Oxygen desat. (mild, short)	20.8%	13.8%	9.4%	49.8%	12.0%	1.6%	8.4%	5.3%
	[6.2 ; 35.5]	[7.0 ; 22.4]	[5.1 ; 42.2]	[30.6 ; 69.0]	[7.8 ; 20.3]	[0.4 ; 3.4]	[2.3 ; 14.9]	[2.6 ; 8.9]
Oxygen desat. (severe)	9.9%	26.7%	27.6%	80.8%	26.9%	7.9%	19.2%	19.1%
	[3.5 ; 22.4]	[14.6 ; 40.7]	[12.2 ; 48.8]	[64.1 ; 92.4]	[18.5 ; 38.2]	[3.0 ; 21.6]	[8.0 ; 37.4]	[9.5 ; 27.4]
Apnea (long)	16.8%	37.7%	32.4%	47.9%	31.7%	11.7%	23.3%	6.5%
	[7.3 ; 46.9]	[21.5 ; 53.6]	[18.2 ; 45.9]	[27.8 ; 64.2]	[18.1 ; 46.7]	[6.8 ; 19.3]	[13.3 ; 33.1]	[3.8 ; 12.5]

Values are median percentages of patients [interquartile range] expected to be treated with the above intervention for the given AE.