IN-HOUSE VERSUS SEND-OUT NGS TESTING FOR METASTATIC NON-SMALL CELL LUNG CANCER: A BUDGET-IMPACT ANALYSIS

U. Silas,¹ M. Blüher,¹ R. Saunders,¹ R. Dumanois,² (1) Coreva Scientific GmbH & Co KG, Koenigswinter, Germany (2) Thermo Fisher Scienific, Waltham, MA, USA

Objectives

- Next generation sequencing (NGS) is used to identify genetic markers of disease, making it important for personalized cancer treatment.
- NGS testing can occur in external laboratories (send-out) or in the hospital (in-house).
- We analyzed the impact on hospital budgets of increasing inhouse NGS for metastatic non-small cell lung cancer (mNSCLC).

Methods

- A cohort-level, decision-tree model (Figure 1) feeding into a Markov model (Figure 2) was used to compare two hospital pathways:
 - Only send-out
 - Mixed in-house (75%) and send-out (25%)

Figure 1 Decision tree modeling movement of patients through standardized testing pathway until therapy decision. The arrows describe the movement of individuals between the different states.

Figure 2 Markov model for disease progression from initiation of therapy until death. The arrows describe the movement of individuals within and between the different states.

- A time horizon of five years was considered from the perspective of a US hospital.
- Costs are in 2021 USD, including costs of NGS capital acquisition associated with the hospital payer.
- The model inputs were derived from a retrospective analysis of real-world data of newly diagnosed stage IV mNSCLC cases and all others from peer-reviewed articles and expert opinions.¹

(Table 1)

Table 1 A selection of key model inputs

Parameter	Value
Cost of in-house NGS testing, per test	\$600*
Cost of send-out NGS testing, per test	\$300*‡
Cost of single-gene testing per test	\$141 ²
Acquisition cost of in-house NGS	\$200,000**
Reimbursement for in-house NGS testing, per test	\$580 ³
Revenue per hospital visit	\$124 ⁴
Send-out turnaround time, days	10.3-27.8 ^{5,1}
In-house turnaround time, days	3 ^{5,6}

*List price of laboratories, ‡ \$3,000 per send-out test with 10% of invoices funded by the hospital (\$300), **Expert opinion

Results

- For a hospital with 500 mNSCLC cases per year, the model estimated increases in overall testing costs as well as revenue with the use of the mixed approach.
- Compared to send-out, the mixed approach resulted in \$710,060 of increased testing costs and \$1,732,506 of increased revenue over the five-year time horizon.
- The return on investment was \$1,022,446 (95% credible Interval: \$787,903; 1,252,846) with a positive break-even point after 15 (95% credible Interval: 14; 17) months of investment.
- Different combinations of mNSCLC cases per year and proportions of in-house NGS implementation result in different break-even points. (Figure 3)
- More cases per year would require a lower rate of in-house NGS adoption to reach the break-even point and vice versa (Figure 3)
- The one-way sensitivity analysis showed that the proportion of send-out NGS testing and the proportion of patients on targeted therapy had the greatest impact on the return on investment.

A											
	Number of patients per year										
	_	50	100	150	200	300	400	600	800		
<u>-</u>	5%	-\$190,156	-\$180,312	-\$170,468	-\$160,624	-\$140,936	-\$121,248	-\$81,872	-\$42,496		
	10%	-\$182,127	-\$164,255	-\$146,382	-\$128,510	-\$92,764	-\$57,019	\$14,471	\$85,962		
of GS	15%	-\$174,099	-\$148,198	-\$122,296	-\$96,395	-\$44,593	\$7,210	\$110,815	\$214,420		
ion S	20%	-\$166,070	-\$132,140	-\$98,210	-\$64,281	\$3,579	\$71,439	\$207,158	\$342,877		
ort us(40%	-\$133,956	-\$67,911	-\$1,867	\$64,177	\$196,266	\$328,355	\$592,532	\$856,709		
Prop	60%	-\$101,841	-\$3,682	\$94,476	\$192,635	\$388,953	\$585,270	\$977,905	\$1,370,541		
	80%	-\$69,727	\$60,547	\$190,820	\$321,093	\$581,640	\$842,186	\$1,363,279	\$1,884,372		
	100%	-\$37,612	\$124,775	\$287,163	\$449,551	\$774,326	\$1,099,102	\$1,748,653	\$2,398,204		
В											
			Number of patients per year								
	_	50	100	150	200	300	400	600	800		
	5%	>60	>60	>60	>60	>60	>60	>60	>60		
	10%	>60	>60	>60	>60	>60	>60	>60	49		
of GS	15%	>60	>60	>60	>60	>60	>60	45	36		
e Non	20%	>60	>60	>60	>60	>60	51	37	29		
ort us(40%	>60	>60	>60	52	37	29	21	17		
oh	60%	>60	>60	47	37	27	21	16	12		
Pr	80%	>60	52	38	30	21	17	12	10		
	4000/		10	0.4	05	10		4.0			

Figure 3 Scenario analysis A Return on investment after five years. B Payback period (months), dark grey: scenario does not break even withn five year time horizon.

ISPOR 2023 May 7-10, 2023 Boston, MA, USA

CONCLUSION

- An in-house NGS system reduces the testing turnaround time, and increases the number of mNSCLC patients on targeted therapy.
- Hospitals with >100 mNSCLC cases per year are expected to find in-house NGS profitable within 5 years.
- The mixed approach reduced the mean test turnaround time by 9.86 (9.21; 10.49) days and led to a +3.38 (2.31; 4.05) %-points increase in patients on targeted therapies (Figure 4).

Figure 4 Effects of a mixed approach **A** Average turn-around time in days **B** Patients on targeted therapy as a percentage of all patients

References

- Robert Smith, MD, Mei Xue, Rhonda Williams, Natalie Dorrow. Retrospective Analysis Using Real-World Data (RWD) in Predominately Newly Diagnosed Stage 4 Non-small Cell Lung Carcinoma (NSCLC-4) to Determine the Effect of Genomic Profiling on Treatment Decisions; 2021; ST59
- Johnston KM, Sheffield BS, Yip S, Lakzadeh P, Qian C, Nam J. Costs of in-house genomic profiling and implications for economic evaluation: a case example of non-small cell lung cancer (NSCLC). J Med Econ. 2020;23(10):1123-1129.
- Sabatini LM, Mathews C, Ptak D, et al. Genomic Sequencing Procedure Microcosting Analysis and Health Economic Cost-Impact Analysis: A Report of the Association for Molecular Pathology. J Mol Diagn. 2016:18(3):319-328.
- Vanderpoel J, Stevens AL, Emond B, et al. Total cost of testing for genomic alterations associated with nextgeneration sequencing versus polymerase chain reaction testing strategies among patients with metastatic non-small cell lung cancer. J Med Econ. 2022;25(1):457-468.
- Sheffield BS, Beharry A, Diep J, et al. Point of Care Molecular Testing: Community-Based Rapid Next-Generation Sequencing to Support Cancer Care. Curr Oncol. 2022;29(3):1326-1334.
- Ilié M, Hofman V, Bontoux C, et al. Setting Up an Ultra-Fast Next-Generation Sequencing Approach as Reflex Testing at Diagnosis of Non-Squamous Non-Small Cell Lung Cancer; Experience of a Single Center (LPCE, Nice, France). Cancers (Basel). 2022;14(9).

Disclosure

US and **MB** are employees and **RS** is the owner of Coreva Scientific GmbH & Co KG, all of whom received consultancy fees for this research. **RD** is an employee of Thermo Fisher Scientific. The research was funded by Thermo Fisher Scientific.